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The first Hopf bifurcation of the infinite cylinder wake is analysed theoretically and by 
direct simulation. It is shown that a decomposition into a series of harmonics is a 
convenient theoretical and practical tool for this investigation. Two basic properties of 
the instability allowing the use and truncation of the series of harmonics are identified : 
the lock-in of frequencies in the flow and separation of the rapid timescale of the 
periodicity from the slow timescale of the non-periodic behaviour. The Landau model 
is investigated under weak assumptions allowing strong nonlinearities and transition to 
saturation of amplitudes. It is found to be rather well satisfied locally at a fixed position 
of the flow until saturation. It is shown, however, that no truncated expansion into a 
series of powers of amplitude can account correctly for this fact. The validity of the 
local Landau model is found to be related to the variation of the form of the unstable 
mode substantially slower than its amplification. Physically relevant characteristics of 
the Hopf bifurcation under the assumption of separation of three timescales - those of 
the periodicity, amplification and deformation of the mode - are suggested. 

1. Introduction 
Experimental measurements, as well as results of numerical simulations of the 

instabilities at a fixed spatial point of various incompressible flows, seem to confirm 
very accurately the Landau model of the Hopf bifurcation (Landau & Lifshitz 1959). 
As a result, practically all experimental and numerical investigations of the Hopf 
bifurcation in incompressible fluid flows have been carried out in the framework of this 
model. Experimental investigations of the Landau model have concentrated on the 
cases of an infinite cylinder wake (Mathis, Provansal & Boyer 1987; Sreenivasan, 
Strykowski & Olinger 1987; Strykowski & Sreenivasan 1990) and a round jet (Raghu 
& Monkewitz 1991). Complete numerical studies have not been reported so far; 
however, numerous data are available concerning the Strouhal number of the cylinder 
wake at low Reynolds numbers (Karniadakis & Triantafyllou 1989 ; Braza, Chassaing 
& Ha Minh 1986) or the critical Reynolds number (Jackson 1987). The typical 
behaviour of the Hopf bifurcation has been found also at the second bifurcation in the 
cylinder wake, corresponding to the transition to tridimensionality (Karniadakis & 
Triantafyllou 1992). 

Since the introduction of the Landau model to explain the transition to instability 
of fluid flows an uncertainty has been characterizing its interpretation in systems of an 
infinite number of degrees of freedom. The problem appears because the model: 

t Present address: LSEET, Universite de Toulon et du Var, BP 132, 83954 La Garde, Ctdex, 
France. 
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du 
- = (y+iw)u-(C,+iCi))u12u 
dt 

does not concern the spatial variables of the instability. 
The linear analysis allows the complex constant y+iw to be understood as an 

eigenvalue of the linearized Navier-Stokes operator. The physical meaning of y and o 
is that of the amplification rate and the angular frequency, respectively, of oscillations 
having infinitesimal amplitudes. These constants are thus global (global in that sense 
that they are the same at all points of the flow) characteristics of the unstable global 
(Huerre & Monkewitz 1990) mode. To determine these characteristics it is sufficient to 
place a probe at an arbitrary point of the flow and record the time evolution of any flow 
characteristic. (In the cylinder wake the first bifurcation corresponds to the symmetry 
breaking in the plane perpendicular to the cylinder axis, the usual characteristic chosen 
is thus the transverse velocity in the flow axis.) 

This is not the case for the constant Cr+iCi of the Landau model. To see this it is 
sufficient to consider the saturation amplitude (corresponding to dlu)/dt = 0), given by 
(y/C,);. This amplitude varies in space, which implies that the ‘constant’ C, varies in 
space. 

To avoid this problem it has been suggested that the amplitude normalized with 
respect to the saturation amplitude should be introduced (see e.g. Raghu & Monkewitz 
1991): 

21 = u(cr/y);, 

which yields an equation of the form 

where Aw = - yCi/C, stands for the increase of angular frequency which occurs during 
amplification of the amplitude to saturation : 

AU = usat - 0. 

This approach reduces considerably the predictability of the model however. 
Whereas the linear model (1) (without the cubic term) predicts the true value of the 
amplitude at any time, as long as the nonlinear terms remain negligible, the reduced 
model no longer provides the possibility of predicting more than the percentage of the 
saturation amplitude reached at a given time moment. Moreover, the constant Aw is 
not a priori independent of the spacial position. The fact that Aw seems to be actually 
a global constant is non-trivial and is certainly related to the nonlinear phenomenon 
of lock-in states observed in wakes (Karniadakis & Triantafyllou 1989; Li, Sun & 
Roux 1992). Thus, the validity of the Landau model needs to be investigated and 
explained. 

Limitations of the Landau model theory appear also when the higher harmonics 
appearing at the instability are studied. This phenomenon can be described accurately 
near the onset of the instability (in the weakly nonlinear case). Some theoretial papers 
tackle this problem in parallel flows (Benney 1960; Gaster 1968; Stewartson & Stuart 
1971). The method used, consisting in developing the solution of the Navier-Stokes 
equations into a power series of some parameter, most frequently the oscillation 
amplitude, have been summarized by Herbert (1983). These perturbation methods are, 
however, unable to describe the bifurcation completely up to the saturation of the 
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amplitude. The theory presented by Herbert (1983) consists in casting the fundamental 
unstable mode in the form 

the dot standing for all relevant spatial variables (which can be one to three, depending 
on the case described). The Landau model then arises by truncating the above 
expression at rn = 1. It is clear that this truncation holds only for small amplitudes. At 
saturation the first- and third-order terms (rn = 0 and rn = 1) become comparable, 
which means that higher-order terms can no longer be neglected. Hence the validity of 
the Landau model up to saturation cannot be considered as a trivial consequence of 
the perturbation theory. In the same way, (2) predicts correctly that the fundamental 
mode deforms as the amplitudes grow. However, as indicated by our direct simulations 
of the cylinder wake, this deformation is quite substantial and cannot be accounted for 
by a limited series expansion. 

In this paper we develop a nonlinear theory based on the separation of timescales 
characteristic of the Hopf bifurcation. We show that, at least in the cylinder wake close 
to the instability threshold, there is a substantial difference between the timescale 
defined by the period of wake oscillations, that defined by the amplification rate and 
that characterizing the deformation of the mode. If the oscillation period is 
substantially smaller than the timescale of the amplification, it is possible to obtain, in 
a natural way, a rapidly converging decomposition of the unstable perturbation into 
a series of harmonics. We present this development in 92. In the same section we 
reconsider the Landau model on the basis of such a development. One interpretation 
consists in reducing it to the system with a single degree of freedom represented by the 
fundamental mode. In 93 we present results of numerical simulations of the infinite- 
cylinder wake. We find that the theory presented in 92 holds except the proposed 
interpretation of the Landau model. In 94 we suggest therefore a generalized version 
of the model obtained by truncating the development of the unstable perturbation at 
the second harmonic. We show that the fact that the complex constant C = C, + iCi 
appears to be independent of time is due to the slow timescale of deformation of the 
mode as compared to the timescale of its amplification. This constant remains, 
however, dependent on the spatial position. As a result the full characterization of the 
Hopf bifurcation within the framework of this model cannot be reduced to space- 
independent constants. 

2. Theory 
2.1. Linear theory 

The usual linear theories (Drazin & Reid 1981) of the onset of instabilities in fluid flows 
are based on linearized Navier-Stokes equations. To simplify our analysis let us limit 
ourselves to the case of a two-dimensional flow described in the stream function 
formulation by a single equation : 

V4$ = 0 ( 3 )  
avz$ a$avz$ a$av2$ 1 

at ay ax ax ay Re 
-+ ___-___-_ 

3 F L M  164 
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where V2 stands for the Laplacian operator and the velocities (u, v) can be expressed as 
the partial derivatives of $ via 

u = -  v=--* a$ 
aY ' ax 

Equation (3)  is made dimensionless with respect to a characteristic length and 
velocity. In our case we shall be concerned with an unconfined flow past a circular 
cylinder. The characteristic length will be thus the cylinder diameter D and the 
characteristic velocity the inflow velocity at infinity Urn, so that Re = U,  D/v .  
Moreover if 2, j7, u", v" and t" are the variables describing the coordinates, velocities and 
time in, say, metres, metres per second and seconds, the dimensionless variables x, y ,  
u, II and t are defined as follows: 

Let us assume the flow field 1CC0, the solution of equation (3) ,  to be unstable for a 
given Reynolds number Re. The instability is characterized by the existence of a 
solution of the form + = $O+% (4) 

where p, is a perturbation of $o having a trend to amplification. If we insert (4) into (3) 
and neglect the nonlinear terms we arrive at the equation 

where Lf[$o] is the following linear operator: 

and where U and V are, respectively, the streamwise and transverse velocity of the 
unperturbed flow field: 

Let us assume the instability to be initiated by an infinitely small perturbation p,. To 
give rise to the instability, this perturbation has to be linearly dependent on an 
eigenfunction of the problem : 

corresponding to an eigenvalue h having a positive real part Re (A). 
The eigenvalue problem (7) is not fully defined unless the boundary conditions are 

specified. Depending on the boundary conditions the spectrum of the operator (6) may 
be either discrete or continuous. In the case of wakes or jets the eigensolutions can be 
assumed to be confined in space (i.e. at least square-integrable along with their partial 
derivatives up to a given order), which yields a discrete spectrum (see e.g. Jackson 
1987). The physical meaning of such eigensolutions is that of waves having a time- 
independent envelope. A wide class of problems defined on infinite domains does not 
have any discrete spectrum. Such is the case of parallel flows. In that case the boundary 

( 9 + + V 2 ) $  = 0 (7) 
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conditions have to express the physical situation corresponding to travelling wave 
packets the form of which is to be defined at infinity. For parallel flows such waves are 
simply plane waves throughout the whole domain. In general, the boundary conditions 
may express that the solutions behave asymptotically like plane waves far up- and 
downstream. Such solutions are, of course, no longer square-integrable and describe a 
continuous spectrum parametrizable by the wavenumber of the asymptotic wave. 

The discrete spectrum case presents a special theoretical interest as it includes 
instabilities arising in confined domains or instabilities in flows with stationary (and 
easily experimentally controllable) boundary conditions in the absence of non- 
stationary external forcing. As we have already remarked, the case of wakes belongs 
to this class of flows. For this reason, we shall assume the perturbation rp to satisfy the 
following boundary conditions on the boundary i3Q of the domain 0: 

A compatible regularity requirement consists in assuming the space of solutions to be 
square-integrable along with their partial derivatives of order one and two. Such 
functions satisfying the boundary conditions (8) form the Sobolev space Xf). 

The operator (6), as well as the boundary conditions (8), being real, h is an 
eigenvalue corresponding to the eigenfunction $ if and only if the complex conjugate 
h is the eigenvalue corresponding to the eigenfunction 6. The eigenvalues being 
discrete, we can assume that sufficiently close to the instability threshold, there exists 
one and only one pair of eigenvalues with a positive real part. Let us denote these 
eigenvalues A$" - : 

A$" - = y+iw 

with y a o ,  w > o .  (9) 

The equality in condition (9) corresponds to the threshold of the instability. The 
eigenfunctions corresponding to these eigenvalues will be denoted $$" - : 

[ ~ + ( y k i w ) V 2 ] $ ~ )  = 0. (10) 

Let us consider again the initial perturbation Q, to belong to X r )  as a function of 
spatial variables. As only the part proportional to $?) and $?) will be amplified while 
the projections onto other eigenvalues will decay rapidly, the initial perturbation can 
be assumed to be a linear combination of $$'). - We shall have 

where 

The observed perturbation being real we have, moreover, a- = q and we shall 
denote simply a+ = a. The coefficient a expresses the magnitude of the initial 
perturbation and is thus assumed to be infinitely small. 

2.2. Nonlinear theory 
It is clear that, owing to the exponentially increasing factor eyt, the solution (1 I), (12) 
of the linear problem will finally grow so much that the nonlinear terms will no longer 
remain negligible. To investigate the nonlinear effects it is necessary to consider the full 
nonlinear equation for the perturbation 91: 

(13) 
3-2 
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containing the nonlinear term 
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Sufficiently close to the instability threshold, the amplification rate y is substantially 
smaller than the angular frequency w of oscillations with small amplitudes: y < w. As 
long as the perturbation remains small, its temporal evolution is characterized by 
oscillations with angular frequency w slowly amplified in time with the amplification 
rate y and modulated in space by the eigenmodes of the linear problem (10) as 
expressed by equations (11), (12). It is thus useful to introduce two timescales (e.g. 
Newel1 & Whitehead 1969; Stewartson & Stuart 1971). One, expressed by the variable 
t, will correspond to the rapid oscillations with period 27c/w. The other, expressed by 
the variable s, will summarize all the other, substantially slower, variations of the 
perturbation, the main one being that corresponding to the amplification of the 
amplitudes. The solution of (10) can then be written as 

V(t> = x( t ,  9, (1 5 )  

~ ( s ,  t )  being the real solution of the equation 

on %f), periodic with period 2n /w  as a function of t ,  satisfying the initial condition 

(As far as the spatial coordinates are concerned, all equalities are expressed in Hf) . )  
The introduction of the variable s amounts to nothing more than a simple mathematical 
trick allowing the fact that the time dependence is dominated by periodic oscillations 
to be accounted for. Equation (15) expresses the relation between the new function 
~ ( s ,  t )  which is periodic in the second argument and the original, in general aperiodic, 
function 9,. It should be read so that s is replaced by the function s(t) = t. The t- 
derivative of the right-hand side of (15) thus obviously yields the sum of the first 
two terms of (16), which, together with (13), explains the equality (15). The variable s 
thus accounts for any deviation of the final solution (1 5) from the periodicity of x in 
t and therefore the generality of the formulation is conserved. 

The function ~ ( s ,  t )  can now be expanded into a Fourier series: 

fm 

x(s, t )  = 2 en($) einwt, 
n=-m 

the coefficients of which are %f) functions on 52 depending, moreover, on the variable 
s. The function ~ ( s ,  t )  being real, the coefficients of its Fourier series satisfy 

en@) = c-,(s). (19) 

The Fourier components cn(s) satisfy the infinite system of equations coupled via the 
nonlinear terms : 

avzc, +m 

+ (+[@.,I +inwV2) c, + C g ( c k ,  = 0. 
k=-m as 
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The initial condition (17) takes the following form: 

c,(s) - a eysq5f" 8,, + aeYS $- ( O )  Sn,-l, 
s+o 
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Sm, , being the Kronecker symbol. 
For small amplitudes the expansion (1 8) is characterized by a decrease of the modes 

c, proportional to lain. This behaviour of higher harmonics close to the onset of 
instability is used for example by the perturbation theory of Herbert (1983). Indeed, the 
modes ctl  being the only ones having a non-zero initial condition, all the other modes 
become ion-zero via the nonlinear term represented by the sum on the right-hand side 
of (20). Equation (21) can be written as 

c& - O(lal>, 
s +o 

and the modes corresponding to n =k 1 satisfying for s+O 

The nonlinear term thus becomes non-zero first for n = - 2,0,2, yielding 

c&), cll(s) - O(laI2). 
s-+o 

Taking into account progressively all the modes of the order O(lalk) with k < n - 1 we 
find : 

C,G) - O(laln). 
s-to 

To see if the same hierarchy of harmonics remains valid for large values of s, let us 
consider the case of s + co. In this case, experiments and numerical simulations show 
that the amplitudes of oscillations reach saturation and become periodic with an 
angular frequency w, different from w. This experimental fact can be formulated in the 
form of the following assumption : 

Assumption 1 : 
+m 

v,(t) = C b,einwmt. 
n=-m 

In what follows we shall test this assumption by a direct numerical simulation of the 

If we compare the expansion of Assumption 1 to (1 5 )  and (1 8) we get 
cylinder wake. 

c,(s) - b, einAws, 
s-t 00 

where Aw = wm-ww.  

The saturation amplitudes of the individual harmonics are then solutions of the system 

(9[7,h01 + inw, V2) b, + C g(bk, bn-J = 0. 
+m 

k=-W 

We expect the saturation frequency to be not very different from w. 
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Assumption 2 

As we saw in $1, the angular frequency increase Aw is proportional to the 
amplification rate, proportional itself to the deviation of the Reynolds number from its 
critical value. Thus Assumption 2 amounts to assuming only weakly supercritical 
Reynolds numbers : 

y 4 w ,  Aw 4 w. 

Re- Re,,, 
4 1. 

Rer i t  

Close to the threshold of the instability the eigenvalues (10) are the only ones 
approaching the imaginary axis Re(h) = 0. The value of Aw being small, the values 
h = 0, f2w, are thus far away from the spectrum of the linear operator .2[@0]. The 
linear operators on the left-hand sides of the equations of the system above (for 
n + f 1) are thus invertible. The norms of the inverse operators are roughly 
proportional to l / [ (n  - 1) w]. If the magnitude of amplitudes of the fundamental modes 
n = rfr 1 remains smaller than 1 (the velocities remain smaller than the velocities of the 
unperturbed flow), we still have small higher harmonics obeying the relation 

As the result we find that: 
bn - O(lbi,ln)* 

COROLLARY : 

The relation (23), if satisfied and if the norms of the fundamental modes c + ~  can be 
considered as small parameters, allows the system of equations (20) to be reduced to 
a small number of equations (see Bayly, Orszag & Herbert 1988). 

2.3. The Landau model 

The assumptions of the preceding subsection are very weak. Let us now study 
additional assumptions yielding the Landau model. 

If we assume the amplitudes of the fundamental mode to be small enough we can 
limit the number of harmonics in the system (20). If we consider (22) for n = - 2,0,2 
then Assumptions 1 and 2 allow us to assume that the evolution in the variable s is very 
slow compared to the angular frequency w :  

the norm being understood in L2(sZ). The first term in (22) is thus negligible for all 
modes except the fundamental one. This is the well-known phenomenon of slave 
modes (Manneville 1990). 

Let us try to test the following additional assumption consisting in assuming the 
form of the fundamental mode not to vary during the amplification from small 
amplitudes to the saturation : 

Assumption L :  
vs, c1 = A(s) $by), c-l = q. 

Assumption L implies that 
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the functions yo and v2  being given by 

2[$J 70 + L%($$!), $?) + g($?), $!"') = 0, 

(2[$,] + 2iwV2) T~ +g($Sp), $f") = 0. 
(26) 

(27) 
If we insert (24F(27) into (22) (with n = 1) neglecting the terms of order higher than 

three (in the sense of (23)) and taking into account (10) we obtain 

g-rA(s))v2$io'+ IA(s)l"(s)P = 0, (28) 

where /3 is a function of the position in space given by 

P = g(70, 4:")) + g($Y), 70) + g!(72, $'"9 + B($P), 72) .  (29) 
Whereas A @ )  is a global amplification factor of the fundamental mode, the solution 

of (28) depends on the spatial position unless 

V(X, Y )  E 0, P(x, Y )  = cV"!")(X, Y ) ,  (30) 

where C = C,+iC, is a complex constant. Equation (30) is equivalent to Assumption 
L-equation (24). Then A is, indeed, a complex function of a single real variable 
satisfying the equation 

(31) 
dA 
ds 
--~A(.s)+ CIA(s)l2A(~) = 0, 

which is the Landau model after separation of oscillations with the angular frequency 
corresponding to small amplitudes of the fundamental mode eiUt. Separating the 
amplitude IA(s)l from the phase of A(s) we can write in the usual way 

and Aw(s) + CJA(s)l2 = 0, (33) 

yielding the following values at saturation : 

(Awl = (y/C,)i, 

At saturation, the fundamental mode takes the following form: 

Aww = - Ci y/C,. 

y+,  w(x, y ,  t )  = (~ , /y )"y) (x ,  y> ei(w+Awm)t. (34) 

Under Assumption L the Landau model thus applies to the global amplitude A of the 
unstable mode. The value of the Landau constant C is dependent on the normalization 
of the mode $f') but independent of the spatial position. Assumption L corresponds in 
fact to the central manifold theory by stating that the instability can be described by 
projecting onto the unstable mode 4:). The accuracy of this assumption will be 
checked in the following section. 

3. Test of the theory by a numerical simulation of a cylinder wake 
To check the assumptions formulated in 992.2 and 2.3 we investigated numerically 

the wake of an infinite cylinder slightly above the first Hopf bifurcation threshold. The 
two-dimensional simulation was performed using the Nekton code? based on a 

t Copyright 0 1991 by creare.x, Inc., Hanover, New Hampshire, USA, Nekton is a registered 
trademark of Nektonics, Inc. and the Massachusetts Institute of Technology. 
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FIGURE 1. Decomposition of the domain into spectral elements 
(axes labelled in cylinder diameters). 

Point x Y 
1 1.35 0 
2 3.92 0 
3 8.00 0 
4 15.00 0 
5 25.00 0 

7 3.87 1.67 
8 8.00 1.67 
9 15.00 1.67 

10 8.00 5.00 

6 -1.47 0.23 

TABLE 1. Position of points (in cylinder diameter units) at which the time evolution of the unstable 
mode was investigated (x, streamwise direction; y ,  transverse direction, both expressed in cylinder 
diameters). The origin lies in the cylinder centre. 

spectral element spatial discretization (Patera 1984). A substantial effort has been made 
to optimize the discretization to obtain as realistic results as possible. The detailed 
discussion of the discretization optimization and the analysis of the accuracy obtained 
is not the purpose of the present paper as qualitatively the same results can be obtained 
with a much less accurate discretization. Let us, however, remark that the results 
presented in this section can actually be guaranteed to be of a better than 1 YO accuracy 
in such basic quantities as the critical Reynolds number (found to be about 46. l), the 
amplification rate and the Strouhal number. 

The domain decomposition into spectral elements is represented in figure 1. The ten 
crosses in figure 1 mark the position of 10 points at which the temporal evolution of 
the unstable mode has been investigated. The coordinates of these points, expressed in 
cylinder diameters with respect to the position of the cylinder centre, are given in 
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I I I 

2 

0 10 20 

FIGURE 2. Cylinder wake at saturation (Re = 48, axes labelled in cylinder diameters). 

table 1. The boundary conditions have been chosen in the following way : a uniform 
velocity profile at the inflow boundary, a periodicity condition at the lateral boundaries 
and a free outflow condition at the outflow boundary. Ten collocation points in each 
spatial direction of a spectral element have been taken. 

The present calculation was performed at Re = 48, i.e. only slightly above the critical 
value of 46. The overall aspect of the flow obtained at saturation is visualized by several 
streamlines in figure 2. In figure 3(a-c) we show the time evolution of the transverse 
velocity at points 3 ,  6 and 10. It is clearly seen that the mode is, indeed, global with the 
same time evolution in the flow axis downstream and upstream of the cylinder as well 
as far off the wake axis. As explained below, the signals of the transverse velocity at 
the points lying at the flow axis contain no even harmonics, whereas at the points lying 
off the axis the zeroth harmonic is present and, in the same way as the first one, 
develops in time. This explains the asymmetric growth in figure 3 (c). 

Let us consider first Assumptions 1, 2 and their Corollary (23). According to these 
statements the spectra of the signals obtained at points 1-10 should be: 

(i) discrete (Assumption 1) ; 
(ii) not very different for small and big amplitudes (Assumption 2); 
(iii) dominated by a small number of basic harmonics (n  = 1,2,3) (Corollary). 
In figure 4(a-e) we present the logarithmic spectra of signals obtained at points 1, 

3, 5 ,  8, and 10 corresponding to the first and second half of the computation time 
interval, i.e. to small amplitudes and saturation amplitudes, respectively. The graphs 
represent the decadic logarithm of the modulus of the Fourier transform : 

4211 ( v )  = - u(t)  ePsiut dt 
:tr 

of the transverse velocity v as a function of the Strouhal number. (A unit of the vertical 
axis corresponds to one order of magnitude.) It can be seen that Assumptions 1,2 and 
their Corollary are well satisfied. Let us remark that the Strouhal number expressing 
the dimensionless frequency of the fundamental harmonic is 0.12 which in agreement 
with experimental results (see e.g. Williamson 1989). 

It should be explained why the second harmonics are absent in the spectra of signals 
obtained at the flow axis. To see this let us note that the symmetry of the unperturbed 
flow implies that the operator (6)  commutes with the operator of inversion of the y-axis 
defined as 
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. . . , , ,  
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0 100 200 300 400 500 600 700 
t 

FIGURE 3. Time evolution of the transverse velocity at: (a) point 3 (x = 8, y = 0); (b) point 6 
(x = - 1.47, y = 0.23); (c )  point 10 (x = 8, y = 5). Point 10 lies above the flow axis ( y  > 0), the signal 
is asymmetric. 
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Written formally P5Wol= = 5 w 0 1 9 .  

Similarly, relation (14) allow us to write 

71 

If we apply the operator 9 to both sides of each of (20) we then easily find that 
if the sequence of modes {c,};=-, is a solution of system (20) then the sequence 
{( - l),+l P[c,]},"=-, is also a solution. The uniqueness of the solution of (20) below 
the next bifurcation threshold then yields 

c,(x, -Y) = (- c,(x, Y) .  (3 5) 

Equation (35) shows that the odd modes are symmetric and the even modes are 
antisymmetric. As a result the even modes of the stream function vanish on the 
symmetry axis. Owing to the relations following (3) the transverse velocity u possesses 
the same symmetry properties as the stream function whereas the longitudinal velocity 
- the y-derivative of the stream function - has symmetric even modes and anti- 
symmetric odd modes. This explains, in particular, the well-known fact that a probe 
placed in the flow axis indicates a frequency of the longitudinal velocity two times too 
high. 

Let us finally consider the Landau model interpretation suggested in $2.3. Figure 5 
shows the form of the transverse velocity profile along the flow axis downstream of the 
cylinder for small amplitudes and at saturation. It is immediately seen that the form of 
the mode varies rather substantially. Let us note that figure 5 shows also that the 
streamwise wavelength of the vortex street far downstream of the cylinder is 7.7 
cylinder diameters, which is in agreement with the value given by Williamson (1989) for 
the same Reynolds number. This value combined with that obtained for the Strouhal 
number yields a phase velocity of 0.92. 

Though this figure shows how poorly Assumption L is satisfied we further analysed 
(31). Using the Hilbert transform with an appropriate window (Croquette & Williams 
1989; Kolodner & Williams 1990; Le Gal 1992) it is possible to separate the amplitude 
and the phase of the signal to analyse (32) and (33) directly. The results of this analysis 
are shown in figure 6, where the envelope of oscillations is compared to the positive 
part of the signal at point 1, and in figure 7, representing the variation of the frequency 
(Strouhal number) in time. We determined the coefficients of the linear relation 
between the logarithmic time derivative and the square of the amplitude: 

and between the angular frequency and the square of the amplitude: 

&(s) = w -  CJA(s)l2 = 0, (37) 

by the least-squares method. As we have already pointed out, to define unambiguously 
the Landau constant C,+iCt we have to normalize the linear mode $y). The true 
dependence of the logarithmic derivative of the amplitude and the angular frequency 
on the square of the amplitude for point 1 is represented in figure 8. (The normalization 
in figure 8 is arbitrary.) The linearity is obviously rather accurately satisfied. The 
easiest way to normalize the linear mode was to set its value to 1 at one of the 
investigated points. For this purpose we chose point 5 (xo = 25, yo = 0), at which the 
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FIGURE 4. Spectra (log,, of the absolute value of the Fourier transform) of the transverse velocity 
o = v"/U,: for small amplitudes (dashed line) and at saturation (full line). The horizontal axis is 
labelled in Strouhal number values. (a) Point 1: the first peak corresponds to the fundamental 
harmonic, the second one to the third harmonic. The shift of frequency between the peaks of the 
dashed line and the full line is clearly visible. (b) Point 3: the first and third harmonics for both lines 
are visible. At saturation the fifth and seventh harmonic can be distinguished. (c) Point 5 :  the first, 
third and Mth (at saturation only) harmonics are visible. (d) Point 8 : at saturation all the harmonics 
n = 1, 2, 3, 4, 5,  6 are visible. (e) Point 10: the first five harmonics are visible at saturation. 

infinitesimal mode has maximum amplitudes (among the 10 chosen points), Equation 
(36) integrated in time at a fixed point (x,~) yields 

2ys -; a&, Y ,  4 = + - e- 1 , 
a,(x,y,s) being the amplitude of the v-velocity in the point ( x , y )  at the time s. The 
infinitesimal amplitude corresponds to the extrapolation to s + - co. The normalized 
amplitude will thus be defined as 

4 0  = a,(& Y ,  t )  w, v), 

where 
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X 

X 

FIGURE 5. Transverse velocity profile (v = 5 / U m  us. x =  Z l D )  along the wake axis ( y  = 0) 
downstream of the cylinder (a) for small amplitudes (maximal transverse velocity amplitude : 0.024) 
and (b )  at saturation (maximal transverse velocity amplitude : 0.21). 
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FIGURE 6. Comparison of the envelope of oscillations obtained by Hilbert transformation (full line) 
and of the analysed signal at point 1. (Only the positive part of the signal is shown.) 
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FIGURE 7. Time evolution of the Strouhal frequency. 
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FIGURE 8. (a) Logarithmic time derivative of the amplitude of the dimensionless transverse 
velocity us. square of the amplitude; (b )  Strouhal number us. square of the amplitude. 
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Point 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Y 
0.007934 
0.007938 
0.007933 
0.007972 
0.007884 
0.007903 
0.007966 
0.007 914 
0.007921 
0.007931 

c, 
0.526 
0.176 
0.137 
0.173 
0.246 

15.577 
0.5740 
0.307 
0.255 
7.007 

W 

0.7412 
0.7410 
0.7403 
0.7391 
0.7383 
0.7414 
0.7410 
0.7406 
0.7405 
0.7410 

c, 
- 1.423 
-0.474 
-0.371 
- 0.467 
-0.684 

-42.218 
- 1.542 
-0.832 
-0.689 
- 19.044 

CJC, 
-2.707 
-2.701 
-2.700 
- 2.704 
-2.774 
-2.710 
-2.686 
- 2.709 
-2.701 
-2.718 

A W  

0.02148 
0.021 44 
0.021 42 
0.021 56 
0.021 87 
0.021 42 
0.021 40 
0.021 44 
0.021 38 
0.021 56 

TABLE 2. Characteristics of the Landau model for the dimensionless transverse velocity in the 
wake of a circular cylinder at the Reynolds number Re = 48 

The results of the analysis of the coefficients of the Landau model are assembled in 
table 2. We remark that the results presented concerning the value of the ratio CJC, 
(equal to -2.7) are in good agreement with experiment (Sreenivasan et al. 1987). 

In table 2 we can see that the amplification rates y and the angular frequency w 
extrapolated to infinitesimal amplitudes, as well as the angular frequency variation Aw 
at saturation (hence also the ratio Ci/C,), are very accurately identical at all the 
investigated points. By contrast, the coefficients C, and Ci related to the amplitudes 
normalized as indicated above are far from constant. The general trend is for the 
gradients of the envelope of oscillations to increase, high values of the constant C, 
meaning a small relative amplification at the saturation. It is seen that the mode is 
amplified most of all near its maximum and much less at the periphery: upstream of 
the obstacle and far from the wake axis. Moreover, the maximum of the mode 
approaches the cylinder as the amplitudes are amplified. This is an experimentally 
observed trend (Mathis 1983). 

If we consider the deviation of the curves in figure 8 from linearity we might be 
tempted to try to obtain a more accurate model by determining the next-order term of 
the expansion in a series of powers of lA(s)lz. In the introduction we, however, argued 
that the expansion in a series of powers of the amplitude cannot account for the 
behaviour of the oscillations up to the saturation. An explanation of the nonlinearity 
of the curves in figure 8 will be given in the next section in terms of the form 
deformation of the unstable mode. 

4. Slow deformation of the mode form and the Landau model 
As we have seen in the preceding section, the Landau model cannot be interpreted 

exactly as describing the temporal evolution of the global amplitude of the unstable 
mode. It is, nevertheless, interesting to understand why the increase of amplitudes of 
oscillations of the transverse velocity recorded at various points of the flow follows so 
accurately the Landau model. Let us, for this purpose, take again the system (20). We 
have seen (see the Corollary in 92.2) that it is possible to limit the system to a few of 
harmonics. Let us consider just n = - 2, - 1, 0,1,2. The equation corresponding to the 
fundamental mode can then be written as 
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To close the system it is necessary to add the following equations (c-, = q): 

(39) 

(40) 
If we solve (39), (40) with respect to co and c2 and insert into (38) we arrive at a single 
equation for the fundamental harmonic: 

av2c, 
as -- ycl + (9[$J+ y + iw) c, + @(c,) = 0, 

where 
(38)-(40). If we switch to the velocity representation: 

is a nonlinear operator yielded by the mentioned reduction of the system 

a, = [a,, 1, a,, 11, 

where 

this equation assumes the form: 

3% 
- - ya, + (L[$,,l+ y + io) a ,  + B(a,) = 0, as 

where L and B are the respective linear and nonlinear operators in the velocity 
representation. We do not need the explicit form of these operators. For what follows 
it is sufficient to use such representation-independent properties as conservation of 
eigenvalues of the linear operator L and the property of the nonlinear operator: 

B(Ap,) = AIAI2 B(Y) (42) 

valid for any spatial function p, and any complex constant A .  This last property is 
immediately obtained using the bi-linearity of the operator 93 and (38)-(40). Let us 
write the second component of (41) formally as 

with (44) 

The index 1 indicates that we refer to the fundamental harmonic and Y refers to the 
v-component. (A similar analysis can be made for higher harmonics too.) As can be 
seen from (44) the function C,, ](x, y ,  s) depends on the time variable s. This explains 
the nonlinear behaviour of the curves in figure 8. It remains to understand why the time 
dependence of C,,,(x,y,s) is weak. To see this let us separate the amplification from 
the form deformation of the mode by writing 

a,(x,y,s) = A(s)4x, .Y,s) ,  (45) 

where a l ( x ,  y ,  s) has a fixed normalization (e.g. a fixed value at reference point) and the 
complex factor A(s) is set to be equal to 1 for s = 0 (a,(x,y,s) corresponds to the 
infinitesimal mode for $-to.) Figure 5 shows that while the amplitudes of the 
oscillations are multiplied by a factor of 10, the form of the unstable mode changes 
much less. If we take as a criterion the displacement of the maximum of the mode, the 
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rate of this change is about 30-40 YO. (The maximum lies at the point x = 21 for small 
amplitudes and at the point x = 13.3 at saturation.) As a result 

(46) 
d In (4s ) )  a In Ia1(x, y ,  41 

ds ’ as 

If we insert (45) into (44) and use (42), we see that the amplification factor A(s) can 
be simplified between the second term of the numerator and the denominator. As to 
the first term in the numerator, it is negligible as can be seen if we remember that for 
s + 0 it is zero (the infinitesimal mode is the eigenmode corresponding to the eigenvalue 
y + iw) and, at the approach to saturation where the mode is deformed, it yields a term 
proportional to the very small factor IA(S)~-~ .  As a result the only relevant term 
remaining in (44) is independent of the amplification factor A(s) and thus, by (45), the 
logarithmic derivative of C,,,(x,y,s) with respect to s is proportional only to the 
logarithmic derivative of al(x, y ,  s) : 

We can thus see that if: 

Assumption 3: the variation of the form of the unstable mode is substantially slower 
than the amplification of its amplitude (see the inequality (46)), then the function 
Cu, l(x, y ,  s) can be considered as independent of time (s). 

If this is the case the real part of the spatial function C,,,(x,y) determines the 
saturation amplitude of the fundamental harmonic of the transverse velocity u,, 1, via 

and the ratio of the real and imaginary parts yields the increase of angular frequency: 

Using these characteristics it is possible to write (43) in the following form: 

Whereas the real numbers y, w and Aw are the same for the fundamental harmonic 
of each flow characteristic and for each spatial point of the flow, each component of 
the flow field is characterized by a specific function expressing its saturation amplitude 
at each point of the flow. To obtain a complete characterization of the bifurcation a 
vector of components representing the independent characteristics of the flow (e.g. 
both velocity components in two dimensions and the velocity formulation), has to be 
given. 

The model presented in (47) is valid only if Assumptions 1-3 are satisfied. It is, 
however, more general than the classical interpretation of the Landau model and 
presents the following advantages : 

(i) assumptions 1-3 do not exclude large amplitudes approaching saturation ; 
(ii) the model contains only directly measurable quantities ; 
(iii) the model is always accurate for both small and saturation amplitudes. 
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(At saturation (47) reduces to identity, for small amplitudes the coefficient of the 
nonlinear term becomes inaccurate but the term is negligible.) 

5 .  Conclusions 
We have analysed the behaviour of the cylinder wake at the first Hopf bifurcation. 

Numerous experimental and numerical results show that, at each point of the flow, the 
flow characteristics, such as the transverse velocity, follow very closely the Landau 
model. We have shown that the explanation cannot be based on a truncated 
development of the Navier-Stokes equations into a series of powers of the amplitude. 
Two basic phenomena explain the Landau-like behaviour of the unstable flow : 

(i) the effect of lock-in states allowing the presence of only a single frequency in the 
flow after saturation and stabilization of the flow oscillations; 

(ii) a deformation of the form substantially slower than the amplification of the 
unstable mode. 

It appears that, if the assumptions formulated in 592.2 and 4 are satisfied, the 
unstable mode is characterized by three real constants: the amplification rate and the 
angular frequency of infinitesimal oscillations and the increase of angular frequency at 
saturation, and by one real (in general vectorial) function in space describing the 
saturation amplitudes of the set of flow characteristics in a given representation of the 
flow at each point of the flow. 

Expansion (18) might provide an interesting alternative for the numerical study of 
periodic flows (Carte, Fraunie & Dussouillez 1991). In the case of unstable flows, such 
as wakes, it would be of interest to explore how the number of harmonics dominating 
the oscillations increases with increasing Reynolds number. The signal clearly becomes 
more complicated higher above the threshold, which indicates that the fundamental 
harmonic is no longer dominant. However, it can be expected that the time evolution 
of the flow remains smooth, which would still imply a rapid convergence of its Fourier 
expansion. If this proves to be the case Assumption 1 will allow the reduction of the 
problem of computing the amplitudes at saturation to a finite set of steady equations. 
This would be of significant importance for the separation of effects due to the onset 
of a subsequent bifurcation. 
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